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Information coding via spontaneous oscillations in neural ensembles
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How information is encoded and decoded via spontaneous oscillations is investigated by using an ensemble
of Hodgkin-Huxley neurons. A signal can be encoded in spontaneous and highly irregular spike trains via
high-order rate coding with the second-order statistics being relevant, in which the temporal structure and the
correlation between the spikes are taken into account. Although the encoded information is implicitly contained
in the spike train, it can be retrieved in the post-synaptic potential. The spontaneous oscillation is filtered and
the irregularity of the spike train is suppressed. In particular, we show that an arbitrary signal can be trans-
mitted reliably through spontaneous and highly irregular spike trains, and then be reconstructed downstream in
the information transmission pathway.

PACS numbds): 87.16.Xa, 05.45-a, 87.19.Dd

How information is encoded by neurons has been studiedoded by spike trains, affects signal transduction is quite
in the field of neuroscience for several decaffes4]. Al- interesting, but has been paid little attention.
though it is generally accepted that neurons signal informa- In this paper, a high-order rate encoding and how to re-
tion through a sequence of the action potential, the neurdrieve information via spontaneous oscillations are studied.
code, by which information is transferred, remains elusive,The spontaneous oscillation is attributed to the excitability of
and a debate on a noisy rate code and a precise tempoiéie neuron. We show that, for these spontaneous oscillations,
code has received renewed intergs6]. To understand the the pattern of the interspike intervéIl) can be modulated
neural code, most effort has focused on the irregularity an@y information. The information is encoded indirectly in the
the role of noise. However, the observed neural code exhibittemporal patterns via the encoding by means of second-order
also a feature of spontaneous oscillation or intrinsic burstingtatistics. This is a long-hypothesized representation of an
(see, e.g., the figure in RdfL]). In peripheral neural systems information encoding schemfgl4], which is now used to
(PNS’s, various sensory neurons output a mode of irregulatinderstand spontaneous and irregular spike trains. The syn-
intrinsic bursting when they are driven by a periodic inputapse can be viewed as a filter or a decoding device. When the
[7-9]. The post-gangalionic sympathetic nerves are comintegration time of the synapse is of the same order of mag-
posed of thousands of unmyelinated fibers. A large numbehitude as the period of the spontaneous oscillation, the infor-
of fibers fire the action potential at the same time to givemation encoded through the second-order statistics can be
bursts or waves of summed spikes. There have been substdgconstructed in the PSP. The spontaneous oscillation and
tial studies on how the bursting arises as well as how ithe irregularity of the spikes are filtered by the synapse. It
affects signal transduction and neuroeffectors, but concluseems that the spontaneous oscillation acts as a kind of car-
sions appear to be diverdsee Ref.[10] and references rier wave to enable a reliable information transmission with-
therein. In a central nervous systef@NS), neurons fire in  out affecting the next neuron. The present scheme of encod-
highly irregular and complex spontaneous temporal patternlg and decoding may be related to some experimental
[11]. In recent years, a fast spontaneous oscillatioainly ~ results.
30-40 Hz) has been observed in the brain cortex and was We construct a two-layer summing neural cell ensemble
proposed to serve as a binding functift2,13. Whether by several hundreds of Hodgkin-Huxl¢liH) neurong15],
these spontaneous oscillation-dominated spike trains ca®s schematically shown in Fig(a. The neurons in the first
carry and transmit signal, what kind of information is con- layer, where the information is encoded, are connected in
tained in the spike train, and how to retrieve it are yet to bgParallel. Each neuron is subjected to a common input signal
answered. On the other hand, most experimental and theorddlus an independent noise source. The information is de-
ical studies are based on the spike trains, but the role ofoded in the second layer, where the spike trains are con-
synapses has been paid little attention in information transverged on the dendrites through excitatory synapses. The ex-
mission. In fact, the spike should pass synapses to affect theitatory postsynaptic potentidEPSR of these synapses is
neurons in the next stage of pathway, and what the neurorié€ad by the neuron in the second layer. TtieHH neuron is
read is the post-synaptic potenti@SP. The synapse not described by a set of four variable¥,m,n,h) whereV is
only receives a membrane potential by the none-to-all lawthe membrane potentialh andh the activation and inactiva-
but also changes the wave form of the spike train and enabldion variables of sodium current, andthe activation vari-
a spatiotemporal integration of the spike train. How the synable of potassium current. The corresponding equations read
apse of the neuron, which will “read” the information en-
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FIG. 2. The coding scheme for the aperiodic sigr{a). The
input aperiodic signalb) The normalized EPSP for an ensemble of
neurons with the numbeN=200 in the presence of noiseD(
=10). (c) D=10 andN=500. (d) D=0 (in the absence of noise
and N=200. Insets of(b)—(d): the corresponding encoded spike
train of an arbitrarily chosen neuron in the ensemble. All neurons in
the ensemble are subject to a randomly distributed constant bias
lo[20,60 (uAlcm?).

with firing timest; for the nth neuron. Then the total EPSP
that the neuron in the second layer receives from the neural
ensemble Il neuron$ reads

N ‘
hsYn= > JJJ (slt2)exp(—s/79)S;(t—s)ds,  (6)
=1 0

FIG. 1. (a) The schematic diagram of the ensemble of Hodgkin-Where s is the response rising time of the synapse anis
Huxley neurons(b) The firing rate versus the constant bias for a the synaptic efficacy. Here, we assume that all the synapses

single HH neuron.

dm_ m.(V)—m

dat (V) @
dn n.(V)—n
V) ®
dh_ h.(V)-m
dt (V) @

Herel(t) is the input current. The independent noigds
determined from an Ornstein-Uhlenbeck procegd n/dt

—n++2D&, whereé is the Gaussaian white noise.and

are the same for simplicity and the axon transmission delay
is neglected.

We wish to indicate first that, as an excitable oscillator,
the spontaneous oscillations of HH neurons can be induced
by imposing a large constant bidg. The neuron outputs
periodic sequence of spikes foy>6.2 (wA/cm?). The fir-
ing rate versus, is plotted in Fig. 1b). Becausd is inde-
pendent of time, changing it is equivalent to changing the
reversal potential of leakage channél in Eqg. (1). From
neurobiology, the spontaneous feature can be tuned by its
own physiochemical adjustmefit7], which can be modeled
by changing the parameters of the equations. In the follow-
ing simulation, we choose a largigto keep the output spike
train being dominated by spontaneous oscillations.

The scheme of coding for an aperiodic signal is demon-
strated in Figs. @—2(d). As shown in Fig. 2a), we choose
an arbitrary aperiodic signal as the input signal. In an en-

7. (=0.1 mseg are the intensity and correlation time of semble of 200 neurons, we first apply a random distributed
noise, respectively. The meanings and values of other paramtonstant biad,e[20,60 to each neuron. An independent
eters can be found in Ref16].

Due to a certain chemical transmission process at the symeuron. After the transient period (500 msec), the signal is
apse, a sharp spike induces the PSP witheafunction
(t/ %) exp(t/z) wave form[2]. The output spike train of
each neuron in the first layer can be written as

Si(

t>=2i S(t—t), (5)

noise with the same intensityp(= 10) is also applied to each

put in. The spike train is irregular and spontaneous, which is
shown in the inset of Fig.(®). The signal is reconstructed in
the EPSP with high qualityFig. 2(b)]; that is, what the
neurons in the second layer read is almost the same as that
the neurons in the first layer read. The quality of the re-
trieved signal is improved when the number of neurons in
the ensemble increasgsig. 2(c)]. In other words, the signal
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200 The raster that records the firing events of the system in

the case of Fig. @) is shown in Fig. 3. Because the constant
bias is different for each neuron in the first layer, the firing
rate varies from 87 to 125 set. It is seen that, not only is
the firing rate of each neuron different, but also the firings
are not synchronized. The spike trains are different even
though the same signal is carried. On the other hand, for
identical neurons and in the presence of noise, the same sig-
nal can be transmitted with the quality of the EPSP similar to
Figs. 2b)—2(d) (not shown herg but without synchroniza-
tion among the spontaneous oscillation.

To demonstrate our coding scheme clearly, we choose a
slow sine wave input current
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For a given sine wave signall(=9 uA/cm? and f
=5 Hz), if we adjust the intensity df, (=18 uA/cm?),
we can let the system experience spontaneous oscillations,
which are shown in Fig. 4. In the absence of noise, the neu-
ron bursts with a frequencf,~80 Hz, while the frequency
600 of the input sine wave is 5 Hz. This spontaneous 80 Hz
oscillation is an intrinsic feature of the neuron due to its own
Time (msec) excitability. If we plot the sequence of the ISI in Figch it
is seen that the ISI varies between 10 and 16 msec with a
FIG. 3. The raster that records firing events of the ensemble ithean at about 13 msec, and the varying form is similar to
the case of Fig. @), with a 200 msec window being chosen. the sine wave signal. This mode of temporal pattern is simi-

) ] ) i _lar to the frequency modulation and the spontaneous bursting
can be reliably transmitted downstream in the informations ine carrier wave. The ISI can be written as

transmission pathway even though in a very noisy environ-
ment. ti+1_ti:A0_A1 S|r(27Tft), (8)

In the absence of noise, the signal can also be recon-
structed in the EPSP with high qualitfig. 2(d)]. The spike  with Ag>A;.
train is only dominated by the spontaneous oscillation, as In the presence of noise, the neuron experiences an irregu-
shown in the inset of Fig. (@), with the fluctuation in the lar spontaneous bursting. As shown in Figb) both the
EPSP coming from the uncertain firing times of spike train.firing time and the ISI become random. From the usual
Moreover, a signal transmission with good quality can beanalyses, such as the interspike interval histogii&it) and
observed even when the size of ensemble is as small as 28st Fourier transformatiotFFT), we merely see spontane-
neurons(not shown here The noise or large size of en- ous and irregular spike trains. However, if we plot the se-
semble is unlikely the key prerequisite for understanding thejuence of the ISI with different intensities of external noise

40

coding scheme discussed here. in Fig. 4(d), we see that the ISl is still tuned by the sine
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wave, although it is random. Note that the ISI can be de-
scribed by a probability distribution 1200 b 15t

141
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which represents the probability of finding a spiketat;
following the spike att;. According to Ref[3], the usual
firing rate would be determined by the probability of the
firing at timet; [an exact definition is shown in EA.13) in
Ref. [3]], while, in fact, Eq.(9) means that only the condi-
tional probability Pspike at timet|spike at timet’] is rel-
evant in the present case. The firing rate is not given directly,
but governed by the second-order statistics.
In fact, such a second-order rate coding is different from ‘(’mo — T o oh obs
the usual rate coding in two aspects. First, for a single spike .
train, the usual firing rate means that the probability of firing ISI (Units of T)
at timet; is determined by the signal, without correlation 400
among the spikes. So the usual stochastic-point-process de
scription (the one mostly used is a homogeneous Poissor
point processcan be introduced to analysze the spike train
[3,18], while in our situation the spike trains are highly cor-
related, with the correlation being determined by the sponta- : e .
neous oscillation and modulated by the signal. As shown in 15] 3 5.;“ NS
Eqg. (9), the conditional probability distribution does not de- 200 = »
pend solely onst=t—t’, which is different from the usual . 10
theoretical assumptiof8]. Second, the role of an ensemble 10 15 20 25 30
is different. For the usual rate coding, because the firing time 100 |- ISI (ms)
is directly modulated by the signal, all spike trains in the :
ensemble resemble each other and seem to be synchroniz: I (b)
to the external signal. As a result, it is reasonable to assum . - .
that the elements are identical, while in the present case 0.00 0.05 0.10 0.15 0.20 0.25
because the firing tim_es are implicitly IinI_<ed to the signal, no ISI (Units of T)
tendency of synchronization can be s€Eiy. 3). As long as
the output spike trains are in such a phase that the spontane- FIG. 5. 1,=18 uA/cm?, 1,=9 pA/cm?, andf=5 Hz. The
ous oscillation is dominant, the elements are intrinsically dif-interspike interval histogranflSIH) when (8 D=0 and (b) D
ferent. Note that the excitability of the neuron provides an=1.0. Insets of(a) and (b): the corresponding return map of the
additional degree of freedom for information coding, whichinterspike interval.
gives much more flexibility for the information-coded spike
trains, enabling the same signal transmitted through differergtimulus. It is our understanding that the distribution or pat-
patterns of spike trains. tern of the I1SI may be governed by high order statistics. In
The nonlinear feature of the present firing mode can bexperiments on the periodically forced mechanoreceptor of
seen in Fig. 5. In the absence of nojféy. 5@)], the peak of macaque monkey}7] and cat retinal ganglion celB8], one
the ISIH is related to the spontaneous oscillation. From théind of firing mode is spontaneous bursting messed by noise,
return map of the 1S[the inset of Fig. &8)], we can observe similar to Fig. §b). Because there is no trace of signal in the
the correlation between the consecutive spikes, while the eXSIH or PSTH, this spontaneous and highly irregular spike
act timing of such a correlation is not favored. When thetrain was previously assumed to be irrelevant to information
constant bias increases fol;>16.0 (1;,=9.0 and f transmissior{9]. Here we see the possibility that the signal
=5 Hz), the system will be in such a quasi-periodic-statecan still be encoded. In the experiment of a neuron from area
phase, with the firing patterns the same as that of Fi{§9%  MT of monkey extrastriate visual cortg6], the obtained
In the presence of noise, the peak of the ISIH is messed binstantaneous firing rate has a base mean firing rate and the
noise, while the pattern of the return map is preserved toasters have shown that the firing is a kind of spontaneous
some extent. oscillation pattern. It was argued that the base firing rate
For those spontaneous and highly irregular spike trainsesults from the random input of inhibitory and excitatory
observed in the experiments, it is quite possible that therpostsynaptic potentidiPSP and EPSPwhich can be mod-
exists some kind of hidden high-order statistical featuregled as a random walk. Here we obtain the same result from
which leads to complexity in understanding such neurah different mechanism that the excitability of the neuron it-
codes. For example, in an experiment on a motion-sensitiveelf can lead to a base mean firing rate. On the other hand,
neuron in the fly’s visual systerf20], when the neurons the pattern of instantaneous firing rate is complicated and
were subjected to an aperiodic stimulus, the peristimulusrregular, possibly due to the correlation between the spikes
time histogram(PSTH) indicates that the instantaneous firing and/or the irregularity of the spike trains.
rate was strongly modulated, but was not locked by the The synapse can decode the signal carried by the second-
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FIG. 6. Three different firing patterriga)—(c)] and their corre- FIG. 7. The excitatory postsynaptic potenti@lPSPH with one

sponding PSK(b)—(f)]. The mean firing rate is 100 spike/sec, but spike train exerting on the synapse vs timefgr5 msec with(a)
the ISI patterns are different. The PSP is calculated by taking D=0 and(b) D=5. (c) The normalized EPSP with 200 noise-
=5 msec. independent spike trains exerting on the synapses vs time for

. . . . .. =5 d=5. Thei i ini
order statistics if the integration time of the synapses is in th(—;;l eurg:fesvﬁg input Ci:pg#tt SS;Z;:Z'{;:: thelg U;%tc(:;zth‘f HH
0~ ’ 1

same or_der.magnitude as the average period of the spontanéy uA/cm? and f=5 Hz. When the external noise is switched
ous OSC|IIat|or_1. Theoretically, as shown in E@), _the '€~ off, the oscillation of the membrane potential is shown in Fig) 4
sulted EPSP includes the effects of all the previous spikes.
Because thex function decays rapidly, the temporal integra-
tion can be considered to be the summing of spikes in @bout 13 mse¢see Fig. 4d)]. Through the temporal inte-
given period of time. The time window that the function  gration of spike trains, the sine wave can be retrieved and is
decays to ¥ of its maximum value is referred to as the explicitly demonstrated in the EPSP. When a strong external
integration time of the synapse, which is determinedrby  noise is applied to the system, as shown in Fi@),7the
The synapse can convert the ISI pattern to the the PSP, whérPSP is messed, indicating that only the temporal integration
the ISl is within the integration time of the synapse. Asof one synapse is unable to retrieve the signal reliably from
shown in Figs. @)—6(c), three spike train patterns have the the highly irregular spike trains. However, the result is quite
same mean firing ratéfive spikes in 50 ms time window  different if we consider an ensemble. The normalized EPSP
but with different ISI patterns. We choose the integrationfor an ensemble with 200 neuronk®{'/200) is plotted in
time to be 16 msec7,=5 msec). The resulted PSPs tend toFig. 7(c). It is shown that, when both the temporal and spa-
overlap for consecutive spikes. Different temporal patterns ofial integration are taken into account, the signal is recon-
the 1SI will give different amplitudes of the P9Bee Figs. structed with very high quality. We have examined the cases
6(d)—6(f)]. We note that a series of experiments on Aplysiawith various intensities and frequencies of the signal. As we
done about 30 years adib0] showed that two different pat- can always tune the constant bigsto ensure the output
terns of presynaptic pulses, with the same mean frequencgpike train to be dominated by spontaneous oscillations and
but different second-order statistics, give different postsynchoose an appropriate integration time, the basically same
aptic responses. We may understand now that the reason pfienomenon is observédot shown here That is, as long
due to the wave form of the PSP and the integration time o#s the pattern of output spike train falls in such a quasiperi-
the synapse. odic regime, where the spontaneous oscillation can serve as
For the spontaneous-oscillation-carried sine wave signathe carrier wave, information can be encoded implicitly via
we first look into the integration of only one synapse. In thethe high-order statistics.
absence of noise, the resulted EPSP is shown in Ka. 7 It is worth pointing out that, the input signal is very large
Here we choose,=5 msec, and the mean ISI of bursting is in the present case, being essentially different from the sto-
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chastic resonance where the signal is wgk22. Here the  symmetric Hanning windowW25] or various specifically de-
noise messes the spike train in signal transduction, while, ofined windows[20,26]. The sizes of these windows chosen
the other hand, the independent local noise randomizes thgy different experimentalists vary significantly . In fact,
phases of spontaneous oscillations in the ensemble, enablifigese methods are a kind of temporal integration. The PSTH
the synapses to filter these spontaneous oscillations throughtained by these methods reflects only partially the effect of
spatiotemporal integration, as shown in Fig)7 the synapses. We now learn that the size of the window
The present coding scheme may provide a valuable unshouid be chosen seriously and carefully. It should be deter-
derstanding of the activity of the sympathetic nerves. Firstyineq by the the synapse of the neuron which will “read”
the bursting comes from the spontaneous oscillation of thg,, spike trains. For example, in the CNSs2.<5 msec is
heuron due to its_ own excit_ability, and encodes signa}l as th?ealistic [2], which corresponds to 6—16 msec integration
carrier wave. This mechanism favors the model of Fig) 5 time of the synapse. This size of window is likely biologi-

in Ref.[10], which it was proposed to describe how barore—Call related. In our opinion. a window of function with
ceptor signals interact with sympathetic drive to cause y ) P '

grouping of burst discharges as well as to affect the Overa@pprppriate size is Iikely more reasonable for the data pro-
burst probability. On the other hand, the sympathetic neuroc€SSing in neural experiments. _ .
effector delay has usually a much longer time than the period '" Summary, we have studied information coding via
of the bursting[23]. So the spontaneous oscillation is fil- SPontaneous oscillations in an ensemble of HH neurons. We
tered, as shown in Fig.(6). Although spontaneous oscilla- have found that a signal can be encoded implicitly in spon-
tions have nothing to do with the effector response, they aréneous and highly irregular spike trains via high-order rate
important in signal transduction. coding with the second-order statistics being relevant. The

Finally, we wish to make a remark on the data processingignal is reconstructed in the PSP through the spatiotemporal
of neural experiments. In many experiments, different defiintegration of the synapses. We have shown that an arbitrary
nitions of the firing rate appear to be confusing. Some arsignal can be transmitted reliably downstream in the infor-
simply the conventional definitiof24], while others are re- mation transmission pathway, by making use of spontaneous
lated to the usual signal processing method by introducingscillations in a noisy environment.
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