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Information coding via spontaneous oscillations in neural ensembles

Yuqing Wang and Z. D. Wang*
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How information is encoded and decoded via spontaneous oscillations is investigated by using an ensemble
of Hodgkin-Huxley neurons. A signal can be encoded in spontaneous and highly irregular spike trains via
high-order rate coding with the second-order statistics being relevant, in which the temporal structure and the
correlation between the spikes are taken into account. Although the encoded information is implicitly contained
in the spike train, it can be retrieved in the post-synaptic potential. The spontaneous oscillation is filtered and
the irregularity of the spike train is suppressed. In particular, we show that an arbitrary signal can be trans-
mitted reliably through spontaneous and highly irregular spike trains, and then be reconstructed downstream in
the information transmission pathway.

PACS number~s!: 87.16.Xa, 05.45.2a, 87.19.Dd
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How information is encoded by neurons has been stud
in the field of neuroscience for several decades@1–4#. Al-
though it is generally accepted that neurons signal inform
tion through a sequence of the action potential, the ne
code, by which information is transferred, remains elusi
and a debate on a noisy rate code and a precise tem
code has received renewed interest@5,6#. To understand the
neural code, most effort has focused on the irregularity
the role of noise. However, the observed neural code exh
also a feature of spontaneous oscillation or intrinsic burs
~see, e.g., the figure in Ref.@1#!. In peripheral neural system
~PNS’s!, various sensory neurons output a mode of irregu
intrinsic bursting when they are driven by a periodic inp
@7–9#. The post-gangalionic sympathetic nerves are co
posed of thousands of unmyelinated fibers. A large num
of fibers fire the action potential at the same time to g
bursts or waves of summed spikes. There have been sub
tial studies on how the bursting arises as well as how
affects signal transduction and neuroeffectors, but con
sions appear to be diverse~see Ref.@10# and references
therein!. In a central nervous system~CNS!, neurons fire in
highly irregular and complex spontaneous temporal patte
@11#. In recent years, a fast spontaneous oscillation~mainly
30–40 Hz) has been observed in the brain cortex and
proposed to serve as a binding function@12,13#. Whether
these spontaneous oscillation-dominated spike trains
carry and transmit signal, what kind of information is co
tained in the spike train, and how to retrieve it are yet to
answered. On the other hand, most experimental and the
ical studies are based on the spike trains, but the role
synapses has been paid little attention in information tra
mission. In fact, the spike should pass synapses to affec
neurons in the next stage of pathway, and what the neu
read is the post-synaptic potential~PSP!. The synapse no
only receives a membrane potential by the none-to-all l
but also changes the wave form of the spike train and ena
a spatiotemporal integration of the spike train. How the s
apse of the neuron, which will ‘‘read’’ the information en
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coded by spike trains, affects signal transduction is qu
interesting, but has been paid little attention.

In this paper, a high-order rate encoding and how to
trieve information via spontaneous oscillations are studi
The spontaneous oscillation is attributed to the excitability
the neuron. We show that, for these spontaneous oscillati
the pattern of the interspike interval~ISI! can be modulated
by information. The information is encoded indirectly in th
temporal patterns via the encoding by means of second-o
statistics. This is a long-hypothesized representation of
information encoding scheme@14#, which is now used to
understand spontaneous and irregular spike trains. The
apse can be viewed as a filter or a decoding device. When
integration time of the synapse is of the same order of m
nitude as the period of the spontaneous oscillation, the in
mation encoded through the second-order statistics can
reconstructed in the PSP. The spontaneous oscillation
the irregularity of the spikes are filtered by the synapse
seems that the spontaneous oscillation acts as a kind of
rier wave to enable a reliable information transmission wi
out affecting the next neuron. The present scheme of enc
ing and decoding may be related to some experime
results.

We construct a two-layer summing neural cell ensem
by several hundreds of Hodgkin-Huxley~HH! neurons@15#,
as schematically shown in Fig. 1~a!. The neurons in the firs
layer, where the information is encoded, are connected
parallel. Each neuron is subjected to a common input sig
plus an independent noise source. The information is
coded in the second layer, where the spike trains are c
verged on the dendrites through excitatory synapses. The
citatory postsynaptic potential~EPSP! of these synapses i
read by the neuron in the second layer. Thej th HH neuron is
described by a set of four variables (V,m,n,h) whereV is
the membrane potential,m andh the activation and inactiva
tion variables of sodium current, andn the activation vari-
able of potassium current. The corresponding equations

dV

dt
52gNam

3h~V2VNa!2gKn4~V2VK!

2gL~V2VL!1I ~ t !1h, ~1!
ic
1063 ©2000 The American Physical Society
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dm

dt
5

m`~V!2m

tm~V!
, ~2!

dn

dt
5

n`~V!2n

tn~V!
, ~3!

dh

dt
5

h`~V!2m

th~V!
. ~4!

Here I (t) is the input current. The independent noiseh is
determined from an Ornstein-Uhlenbeck processtcdh/dt
52h1A2Dj, wherej is the Gaussaian white noise.D and
tc ~50.1 msec! are the intensity and correlation time o
noise, respectively. The meanings and values of other pa
eters can be found in Ref.@16#.

Due to a certain chemical transmission process at the
apse, a sharp spike induces the PSP with ana function
(t/ts

2)exp(2t/ts) wave form @2#. The output spike train of
each neuron in the first layer can be written as

Sj~ t !5(
i

d~ t2t i !, ~5!

FIG. 1. ~a! The schematic diagram of the ensemble of Hodgk
Huxley neurons.~b! The firing rate versus the constant bias for
single HH neuron.
m-

n-

with firing times t i for the nth neuron. Then the total EPS
that the neuron in the second layer receives from the ne
ensemble (N neurons! reads

hsyn5(
j 51

N

JjE
0

`

~s/ts
2!exp~2s/ts!Sj~ t2s!ds, ~6!

wherets is the response rising time of the synapse andJi is
the synaptic efficacy. Here, we assume that all the syna
are the same for simplicity and the axon transmission de
is neglected.

We wish to indicate first that, as an excitable oscillat
the spontaneous oscillations of HH neurons can be indu
by imposing a large constant biasI 0. The neuron outputs
periodic sequence of spikes forI 0.6.2 (mA/cm2). The fir-
ing rate versusI 0 is plotted in Fig. 1~b!. BecauseI 0 is inde-
pendent of time, changing it is equivalent to changing
reversal potential of leakage channelVL in Eq. ~1!. From
neurobiology, the spontaneous feature can be tuned by
own physiochemical adjustment@17#, which can be modeled
by changing the parameters of the equations. In the follo
ing simulation, we choose a largeI 0 to keep the output spike
train being dominated by spontaneous oscillations.

The scheme of coding for an aperiodic signal is dem
strated in Figs. 2~a!–2~d!. As shown in Fig. 2~a!, we choose
an arbitrary aperiodic signal as the input signal. In an
semble of 200 neurons, we first apply a random distribu
constant biasI 0P@20,60# to each neuron. An independen
noise with the same intensity (D510) is also applied to each
neuron. After the transient period (500 msec), the signa
put in. The spike train is irregular and spontaneous, which
shown in the inset of Fig. 2~b!. The signal is reconstructed i
the EPSP with high quality@Fig. 2~b!#; that is, what the
neurons in the second layer read is almost the same as
the neurons in the first layer read. The quality of the
trieved signal is improved when the number of neurons
the ensemble increases@Fig. 2~c!#. In other words, the signa

-

FIG. 2. The coding scheme for the aperiodic signal.~a! The
input aperiodic signal.~b! The normalized EPSP for an ensemble
neurons with the numberN5200 in the presence of noise (D
510). ~c! D510 andN5500. ~d! D50 ~in the absence of noise!
and N5200. Insets of~b!–~d!: the corresponding encoded spik
train of an arbitrarily chosen neuron in the ensemble. All neuron
the ensemble are subject to a randomly distributed constant
I 0P@20,60# (mA/cm2).
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can be reliably transmitted downstream in the informat
transmission pathway even though in a very noisy envir
ment.

In the absence of noise, the signal can also be rec
structed in the EPSP with high quality@Fig. 2~d!#. The spike
train is only dominated by the spontaneous oscillation,
shown in the inset of Fig. 2~d!, with the fluctuation in the
EPSP coming from the uncertain firing times of spike tra
Moreover, a signal transmission with good quality can
observed even when the size of ensemble is as small a
neurons~not shown here!. The noise or large size of en
semble is unlikely the key prerequisite for understanding
coding scheme discussed here.

FIG. 3. The raster that records firing events of the ensembl
the case of Fig. 2~b!, with a 200 msec window being chosen.
n
-

n-

s

.
e
20

e

The raster that records the firing events of the system
the case of Fig. 2~b! is shown in Fig. 3. Because the consta
bias is different for each neuron in the first layer, the firi
rate varies from 87 to 125 sec21. It is seen that, not only is
the firing rate of each neuron different, but also the firin
are not synchronized. The spike trains are different e
though the same signal is carried. On the other hand,
identical neurons and in the presence of noise, the same
nal can be transmitted with the quality of the EPSP similar
Figs. 2~b!–2~d! ~not shown here!, but without synchroniza-
tion among the spontaneous oscillation.

To demonstrate our coding scheme clearly, we choos
slow sine wave input current

I ~ t !5I 01I 1 sin~2p f t !. ~7!

For a given sine wave signal (I 159 mA/cm2 and f
55 Hz), if we adjust the intensity ofI 0 (518 mA/cm2),
we can let the system experience spontaneous oscillati
which are shown in Fig. 4. In the absence of noise, the n
ron bursts with a frequencyf s'80 Hz, while the frequency
of the input sine wave is 5 Hz. This spontaneous 80
oscillation is an intrinsic feature of the neuron due to its o
excitability. If we plot the sequence of the ISI in Fig. 4~c!, it
is seen that the ISI varies between 10 and 16 msec wi
mean at about 13 msec, and the varying form is similar
the sine wave signal. This mode of temporal pattern is si
lar to the frequency modulation and the spontaneous burs
is the carrier wave. The ISI can be written as

t i 112t i5D02D1 sin~2p f t !, ~8!

with D0@D1.
In the presence of noise, the neuron experiences an irr

lar spontaneous bursting. As shown in Fig. 4~b!, both the
firing time and the ISI become random. From the us
analyses, such as the interspike interval histogram~ISIH! and
fast Fourier transformation~FFT!, we merely see spontane
ous and irregular spike trains. However, if we plot the s
quence of the ISI with different intensities of external noi
in Fig. 4~d!, we see that the ISI is still tuned by the sin

in
-

l

e

FIG. 4. The membrane poten
tial against time for signalI 0

518 mA/cm2, I 159 mA/cm2,
and f 55 Hz with ~a! D50 and
~b! D51. The dashed lines are
the input sine wave signal.~c! The
corresponding interspike interva
~ISI! vs spike number for~a!. ~d!
The ISI vs spike numbers with
different noise (D50, D51, D
55, respectively! are plotted to-
gether. The counting of the spik
number begins att51000 msec.
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wave, although it is random. Note that the ISI can be
scribed by a probability distribution

P@ t i 11ut i #5F„I ~ t !…, ~9!

which represents the probability of finding a spike att i 11
following the spike att i . According to Ref.@3#, the usual
firing rate would be determined by the probability of th
firing at timet i @an exact definition is shown in Eq.~A.13! in
Ref. @3##, while, in fact, Eq.~9! means that only the condi
tional probability P@spike at timetuspike at timet8# is rel-
evant in the present case. The firing rate is not given direc
but governed by the second-order statistics.

In fact, such a second-order rate coding is different fr
the usual rate coding in two aspects. First, for a single sp
train, the usual firing rate means that the probability of firi
at time t i is determined by the signal, without correlatio
among the spikes. So the usual stochastic-point-process
scription ~the one mostly used is a homogeneous Pois
point process! can be introduced to analysze the spike tr
@3,18#, while in our situation the spike trains are highly co
related, with the correlation being determined by the spon
neous oscillation and modulated by the signal. As shown
Eq. ~9!, the conditional probability distribution does not d
pend solely ondt5t2t8, which is different from the usua
theoretical assumption@3#. Second, the role of an ensemb
is different. For the usual rate coding, because the firing t
is directly modulated by the signal, all spike trains in t
ensemble resemble each other and seem to be synchro
to the external signal. As a result, it is reasonable to ass
that the elements are identical, while in the present c
because the firing times are implicitly linked to the signal,
tendency of synchronization can be seen~Fig. 3!. As long as
the output spike trains are in such a phase that the spon
ous oscillation is dominant, the elements are intrinsically d
ferent. Note that the excitability of the neuron provides
additional degree of freedom for information coding, whi
gives much more flexibility for the information-coded spik
trains, enabling the same signal transmitted through diffe
patterns of spike trains.

The nonlinear feature of the present firing mode can
seen in Fig. 5. In the absence of noise@Fig. 5~a!#, the peak of
the ISIH is related to the spontaneous oscillation. From
return map of the ISI@the inset of Fig. 5~a!#, we can observe
the correlation between the consecutive spikes, while the
act timing of such a correlation is not favored. When t
constant bias increases forI 0.16.0 (I 159.0 and f
55 Hz), the system will be in such a quasi-periodic-st
phase, with the firing patterns the same as that of Fig. 5@19#.
In the presence of noise, the peak of the ISIH is messed
noise, while the pattern of the return map is preserved
some extent.

For those spontaneous and highly irregular spike tra
observed in the experiments, it is quite possible that th
exists some kind of hidden high-order statistical featu
which leads to complexity in understanding such neu
codes. For example, in an experiment on a motion-sens
neuron in the fly’s visual system@20#, when the neurons
were subjected to an aperiodic stimulus, the peristimu
time histogram~PSTH! indicates that the instantaneous firin
rate was strongly modulated, but was not locked by
-
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stimulus. It is our understanding that the distribution or p
tern of the ISI may be governed by high order statistics.
experiments on the periodically forced mechanorecepto
macaque monkey@7# and cat retinal ganglion cell@8#, one
kind of firing mode is spontaneous bursting messed by no
similar to Fig. 5~b!. Because there is no trace of signal in t
ISIH or PSTH, this spontaneous and highly irregular sp
train was previously assumed to be irrelevant to informat
transmission@9#. Here we see the possibility that the sign
can still be encoded. In the experiment of a neuron from a
MT of monkey extrastriate visual cortex@5#, the obtained
instantaneous firing rate has a base mean firing rate and
rasters have shown that the firing is a kind of spontane
oscillation pattern. It was argued that the base firing r
results from the random input of inhibitory and excitato
postsynaptic potential~IPSP and EPSP!, which can be mod-
eled as a random walk. Here we obtain the same result f
a different mechanism that the excitability of the neuron
self can lead to a base mean firing rate. On the other h
the pattern of instantaneous firing rate is complicated
irregular, possibly due to the correlation between the spi
and/or the irregularity of the spike trains.

The synapse can decode the signal carried by the sec

FIG. 5. I 0518 mA/cm2, I 159 mA/cm2, and f 55 Hz. The
interspike interval histogram~ISIH! when ~a! D50 and ~b! D
51.0. Insets of~a! and ~b!: the corresponding return map of th
interspike interval.
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PRE 62 1067INFORMATION CODING VIA SPONTANEOUS . . .
order statistics if the integration time of the synapses is in
same order magnitude as the average period of the spon
ous oscillation. Theoretically, as shown in Eq.~6!, the re-
sulted EPSP includes the effects of all the previous spik
Because thea function decays rapidly, the temporal integr
tion can be considered to be the summing of spikes i
given period of time. The time window that thea function
decays to 1/e of its maximum value is referred to as th
integration time of the synapse, which is determined byts .
The synapse can convert the ISI pattern to the the PSP, w
the ISI is within the integration time of the synapse. A
shown in Figs. 6~a!–6~c!, three spike train patterns have th
same mean firing rate~five spikes in 50 ms time window!,
but with different ISI patterns. We choose the integrati
time to be 16 msec (ts55 msec). The resulted PSPs tend
overlap for consecutive spikes. Different temporal pattern
the ISI will give different amplitudes of the PSP@see Figs.
6~d!–6~f!#. We note that a series of experiments on Aply
done about 30 years ago@10# showed that two different pat
terns of presynaptic pulses, with the same mean freque
but different second-order statistics, give different posts
aptic responses. We may understand now that the reas
due to the wave form of the PSP and the integration time
the synapse.

For the spontaneous-oscillation-carried sine wave sig
we first look into the integration of only one synapse. In t
absence of noise, the resulted EPSP is shown in Fig. 7~a!.
Here we choosets55 msec, and the mean ISI of bursting

FIG. 6. Three different firing patterns@~a!–~c!# and their corre-
sponding PSP@~b!–~f!#. The mean firing rate is 100 spike/sec, b
the ISI patterns are different. The PSP is calculated by takingts

55 msec.
e
ne-

s.

a

en

f

cy
-
is
f

l,

about 13 msec@see Fig. 4~d!#. Through the temporal inte
gration of spike trains, the sine wave can be retrieved an
explicitly demonstrated in the EPSP. When a strong exte
noise is applied to the system, as shown in Fig. 7~b!, the
EPSP is messed, indicating that only the temporal integra
of one synapse is unable to retrieve the signal reliably fr
the highly irregular spike trains. However, the result is qu
different if we consider an ensemble. The normalized EP
for an ensemble with 200 neurons (hsyn/200) is plotted in
Fig. 7~c!. It is shown that, when both the temporal and sp
tial integration are taken into account, the signal is rec
structed with very high quality. We have examined the ca
with various intensities and frequencies of the signal. As
can always tune the constant biasI 0 to ensure the outpu
spike train to be dominated by spontaneous oscillations
choose an appropriate integration time, the basically sa
phenomenon is observed~not shown here!. That is, as long
as the pattern of output spike train falls in such a quasip
odic regime, where the spontaneous oscillation can serv
the carrier wave, information can be encoded implicitly v
the high-order statistics.

It is worth pointing out that, the input signal is very larg
in the present case, being essentially different from the

FIG. 7. The excitatory postsynaptic potential~EPSP! with one
spike train exerting on the synapse vs time forts55 msec with~a!
D50 and ~b! D55. ~c! The normalized EPSP with 200 noise
independent spike trains exerting on the synapses vs time ft
55 msec andD55. The input spike train is the output of the HH
neuron with input current parametersI 0518 mA/cm2, I 1

59 mA/cm2 and f 55 Hz. When the external noise is switche
off, the oscillation of the membrane potential is shown in Fig. 4~b!.
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1068 PRE 62YUQING WANG AND Z. D. WANG
chastic resonance where the signal is weak@21,22#. Here the
noise messes the spike train in signal transduction, while
the other hand, the independent local noise randomizes
phases of spontaneous oscillations in the ensemble, ena
the synapses to filter these spontaneous oscillations thro
spatiotemporal integration, as shown in Fig 7~c!.

The present coding scheme may provide a valuable
derstanding of the activity of the sympathetic nerves. Fi
the bursting comes from the spontaneous oscillation of
neuron due to its own excitability, and encodes signal as
carrier wave. This mechanism favors the model of Fig. 5~d!
in Ref. @10#, which it was proposed to describe how baro
ceptor signals interact with sympathetic drive to cau
grouping of burst discharges as well as to affect the ove
burst probability. On the other hand, the sympathetic neu
effector delay has usually a much longer time than the pe
of the bursting@23#. So the spontaneous oscillation is fi
tered, as shown in Fig. 6~d!. Although spontaneous oscilla
tions have nothing to do with the effector response, they
important in signal transduction.

Finally, we wish to make a remark on the data process
of neural experiments. In many experiments, different d
nitions of the firing rate appear to be confusing. Some
simply the conventional definition@24#, while others are re-
lated to the usual signal processing method by introduc
K.
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symmetric Hanning window@25# or various specifically de-
fined windows@20,26#. The sizes of these windows chose
by different experimentalists vary significantly . In fac
these methods are a kind of temporal integration. The PS
obtained by these methods reflects only partially the effec
the synapses. We now learn that the size of the wind
should be chosen seriously and carefully. It should be de
mined by the the synapse of the neuron which will ‘‘read
the spike trains. For example, in the CNS, 2<ts<5 msec is
realistic @2#, which corresponds to 6 –16 msec integrati
time of the synapse. This size of window is likely biolog
cally related. In our opinion, a window ofa function with
appropriate size is likely more reasonable for the data p
cessing in neural experiments.

In summary, we have studied information coding v
spontaneous oscillations in an ensemble of HH neurons.
have found that a signal can be encoded implicitly in sp
taneous and highly irregular spike trains via high-order r
coding with the second-order statistics being relevant. T
signal is reconstructed in the PSP through the spatiotemp
integration of the synapses. We have shown that an arbit
signal can be transmitted reliably downstream in the inf
mation transmission pathway, by making use of spontane
oscillations in a noisy environment.
ia,
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